The 2020 ICPC Asia Macau Regional Contest Editorial

Prepared by Zhejiang University

May 29, 2021

A. Accelerator

Task

We are given n accelerators $a_{1}, a_{2}, \ldots, a_{n}$. The final velocity is

$$
\left(\left(\ldots\left(\left(a_{1}+1\right) a_{2}+1\right) \cdots+1\right) a_{n-1}+1\right) a_{n}
$$

We are asked to calculate the expected final velocity when the order sequence $a_{1}, a_{2}, \ldots, a_{n}$ is randomly shuffled.

A. Accelerator

Observation

$$
\begin{aligned}
& \left(\left(\ldots\left(\left(a_{1}+1\right) a_{2}+1\right) \cdots+1\right) a_{n-1}+1\right) a_{n} \\
= & a_{1} a_{2} a_{3} \ldots a_{n}+a_{2} a_{3} \ldots a_{n}+\cdots+a_{n-1} a_{n}+a_{n}
\end{aligned}
$$

- Assume we pick k unordered items $b_{1}, b_{2}, \ldots, b_{k}$ from the sequence a.
- They can form k ! suffixes of the shuffled sequence, the left $n-k$ items can form $(n-k)$! prefixes.
- So the contribution to the answer is $\left(b_{1} b_{2} \ldots b_{k}\right) \times\left(\frac{k!\times(n-k)!}{n!}\right)$.
- The sum of the left part $\left(b_{1} b_{2} \ldots b_{k}\right)$ is $\left[x^{k}\right] \prod_{i=1}^{n}\left(1+a_{i} x\right)$, which can be computed using divide \& conquer and FFT in $O\left(n \log ^{2} n\right)$.

B. Boring Problem

Task

We are given n strings $T_{1}, T_{2}, \ldots, T_{n}$ of length m and a string R. For each $i(1 \leq i \leq|R|)$, we are required to compute the expected length of the final string when it contains any string in T as substring if we repeat appending the i-th $(1 \leq i \leq k)$ lowercase letter with with probability p_{i} to the end of the current string, here the initial string is $R[1 . . i]$.

B. Boring Problem

- W.L.O.G, we can assume $T_{1}, T_{2}, \ldots, T_{n}$ are pairwise distinct.
- Insert $T_{1}, T_{2}, \ldots, T_{n}$ into Trie T^{\prime}, build the Aho-Corasick Automaton G on T^{\prime}, there will be $O(n m)$ vertices.
- Let's denote $g(i, j)$ as the vertex we will go to when we receive letter j at vertex i in G.
- Let's denote $E(x)$ as the expected number of random steps to reach any leaf from the x-th vertex in G.
- If vertex x is a leaf in $T^{\prime}, E(x)=0$.
- Otherwise $E(x)=1+\sum_{1 \leq j \leq k} E(g(x, j)) p_{j}$.
- If we pre-compute all the values of $E(\cdot)$, we can find the answer in $O(|R|)$ time by walking on G.
- There is a straightforward approach to compute $E(\cdot)$ using Gauss Elimination in $O\left(n^{3} m^{3}\right)$, which is unfortunately too slow to pass.

B. Boring Problem

- Consider all the vertices according to their depth in T^{\prime}, from root to the leaves.
- Let's look at a vertex x in T^{\prime}, which is not a leaf.
- If $\operatorname{dep}(g(x, j))>\operatorname{dep}(x), g(x, j)$ must be a child of x in T^{\prime}.
- Otherwise $\operatorname{dep}(g(x, j)) \leq \operatorname{dep}(x)$, so $g(x, j)$ will be considered before x.

Idea

Assume x has $t(t \geq 1)$ children $g\left(x, c_{1}\right), g\left(x, c_{2}\right), \ldots, g\left(x, c_{t}\right)$ in T^{\prime}, we can know $E\left(g\left(x, c_{1}\right)\right)$ if we know $E(x)$ and all other values of $E(g(x, j))$ according to

$$
E\left(g\left(x, c_{1}\right)\right)=\frac{E(x)-1-\sum_{j, j \neq c_{1}} E(g(x, j)) p_{j}}{p_{c_{1}}}
$$

B. Boring Problem

Observation

If we treat $E\left(g\left(x, c_{2}\right)\right), E\left(g\left(x, c_{3}\right)\right), \ldots, E\left(g\left(x, c_{t}\right)\right)$ as unknown variables, we can know $E\left(g\left(x, c_{1}\right)\right)$ because $\operatorname{dep}(g(x, j)) \leq \operatorname{dep}(x)<\operatorname{dep}\left(g\left(x, c_{1}\right)\right)$, all other vertices are considered before.

- The value of the root E (root) should also be treated as unknown.
- Equations on leaves (i.e. $E(x)=0$) are unused.
- Hence we will get n unknowns and n equations, run Gauss Elimination in $O\left(n^{3}\right)$, then we can get all the values of $E(\cdot)$.
- Overall time complexity is $O\left(n^{3}+n^{2} m k+|R|\right)$.

C. Club Assignment

Task

We are given n positive integers $w_{1}, w_{2}, \ldots, w_{n}$, divide them into two groups such that

$$
1 \leq i<j \leq n, i \text { and } j \text { are in the same group }\left\{w_{i} \oplus w_{j}\right\}
$$

is maximized.

C. Club Assignment

- Build a graph G with n vertices $1,2, \ldots, n$, the weight of the edge between i and j is $w_{i} \oplus w_{j}$.
- Initially the graph contains no edges. Add all edges in non-decreasing order by weight.
- Assume here comes an edge (u, v) with weight $w_{u} \oplus w_{v}$:
- If u and v are not connected: Link them with this edge, they should be in different groups.
- If u and v are connected, and they should be in different groups: Ignore this edge.
- If u and v are connected, and they should be in the same groups: Conflict arises, the current assignment is the answer.

C. Club Assignment

Lemma

Find the minimum spanning tree of G, assign adjacent vertices into different groups is optimal.

- The algorithm to find the XOR minimum spanning tree is a well-known recursive approach.
- Divide all numbers into two groups according to their highest digit, solve recursively for these groups, then add the minimal possible edge between the groups.
- Finding the minimal possible edge can be done using 01-Trie.
- Time complexity: $O\left(n \log ^{2} w\right)$.

D. Artifacts

Task

We are given 5 artifacts, and we are asked to calculate the expected damage.

D. Artifacts

- Read the whole statement.
- Parse the input carefully.
- Calculate the expected damage.

Task

There is a mountain

$$
(0,0)-\left(1, h_{1}\right)-\left(2, h_{2}\right)-\cdots-\left(n, h_{n}\right)-(n+1,0)
$$

At each point $\left(i, h_{i}\right)$, a picture is taken, which covers all the points (x, y) where $i-W \leq x \leq i+W$ and $h_{i}-H \leq y \leq h_{i}+H$. For $k=1,2, \ldots, n$, keep exactly k pictures, maximize the total area of the mountain which is covered by at least one picture.

Observation

The picture taken at $\left(i, h_{i}\right)$ can only coincide with those pictures taken at $\left(j, h_{j}\right)$ where $|i-j| \leq 2 W-1$.

- Let's denote $d p[i][j][S]$ as the maximum total covered area such that we choose to keep j pictures in the first i points, where S is a $(2 W-1)$-bit binary mask denoting the kept pictures in the previous $2 W-1$ points.
- The number of states: $O\left(n^{2} 2^{2 W-1}\right)$.
- The transition can be done in $O(1)$ if we pre-compute the expanded covered area.

F. Fixing Networks

Task
 Construct a simple undirected graph with n vertices and c components, where the degree of each vertex is d.

F. Fixing Networks

- $d=0$ or $d=1$ are trivial.
- The cases for no solution:
- $c(d+1)>n$: Number of vertices is not enough.
- Both n and d are odd: The sum of degrees is not even.
- When there is a solution, we can construct $c-1$ components by assign each as a complete graph with $d+1$ vertices.

F. Fixing Networks

- Now we only need to handle the case $c=1$.
- Let $k=\left\lfloor\frac{d}{2}\right\rfloor$, construct a cycle, link each vertex to the previous k vertices and the next k vertices.
- When d is odd, link each vertex to the extra vertex opposite to it on the cycle, because n is always even in this case.

G. Game on Sequence

Task

There is a sequence $A_{1}, A_{2}, \ldots, A_{n}$ with non-negative integers. Initially a token is at position k. Two players take turns moving the token from i to a position j on the right side such that A_{j} differs from A_{i} on at most one bit in binary representation.
We are required to perform two types of operations:

- Append an integer at the end of the sequence A.
- Predict the winner when the token is at position k.

G. Game on Sequence

- For each position k, determine the value of f_{k} : Can the current player win when the token is at k ?
- $f_{k}=\operatorname{OR}\left(\operatorname{NOT} f_{j}\right)$, where $j>k$ and A_{j} differs from A_{k} on at most one bit in binary representation.
- Assume there are two positions i and j, where $i<j$ and $A_{i}=A_{j}$:
- If $f_{j}=$ False: By the definition of f_{i}, we can know $f_{i}=$ True.
- If $f_{j}=$ True: There exists a position k such that $k>j$ and $f_{k}=$ False, so $k>i$ and $f_{i}=$ True.

G. Game on Sequence

Lemma

For two positions i and j, where $i<j$ and $A_{i}=A_{j}, f_{i}=$ True always holds.

- Assume the token is at k :
- If k is not the rightmost position matches A_{k} : We can claim $f_{k}=$ True.
- Otherwise keep only the rightmost position for each value and run brute-force dynamic programming to find the answer.
- Time complexity: $O(m A \log A)$.

H. Fly Me To The Moon

Task

There is an infinity grid and n types of spacecrafts $d_{1}, d_{2}, \ldots, d_{n}$. Assume we are at (x, y), we can choose a type of spacecraft d_{i} and fly to $(x+d x, y+d y)(d x, d y \geq 0)$ where $0<d x^{2}+d y^{2} \leq d_{i}^{2}$. There are m broken points we can't touch. We are required to count the number of ways to reach $(1000,1000)$ from $(0,0)$.

H. Fly Me To The Moon

- Assume the number of ways to reach (x, y) from $(0,0)$ is ways (x, y) when there are no broken points.
- Add $(1000,1000)$ into the set of broken points for convenience.
- Let's denote f_{i} as the number of ways to reach the i-th broken point from $(0,0)$ such that we never visit any other broken point.
- $f_{i}=\operatorname{ways}\left(x_{i}, y_{i}\right)-\sum_{j, j \neq i} f_{j} \times \operatorname{ways}\left(x_{i}-x_{j}, y_{i}-y_{j}\right)$, where $x_{j} \leq x_{i}$ and $y_{j} \leq y_{i}$.
- If we pre-compute $\operatorname{ways}(x, y)$ for all pairs of (x, y) $(0 \leq x, y \leq 1000)$, we can find the answer in $O\left(m^{2}\right)$ time.

H. Fly Me To The Moon

- Now we are going to pre-compute ways (x, y).
- Ignore all broken points, assume the number of ways to reach (x, y) from $(0,0)$ in a single step is one (x, y).
- Let's denote $G(x, y)=\sum_{i \geq 0} \sum_{j \geq 0}$ one $(i, j) x^{i} y^{j}$.
-

$$
\operatorname{ways}(i, j)=\left[x^{i} y^{j}\right] \sum_{k \geq 0} G(x, y)^{k}=\left[x^{i} y^{j}\right] \frac{1}{1-G(x, y)}
$$

- Here $\frac{1}{1-G(x, y)} \bmod x^{1001} \bmod y^{1001}$ can be computed using FFT in $O\left(1000^{2} \log 1000\right)$.

Task

There is a sequence of piles of stones, Bob can pay to remove some piles from the game.
Initially the sequence is empty. We are required to perform three types of operations:

- Append a new pile at the end of the sequence.
- Delete the rightmost pile.
- Find the cheapest way for Bob to cheat such that the first player of the Nim game will lose.
The memory limit is 8 MB .

I. Nim Cheater

- The first player will lose iff the XOR sum of all numbers is zero.
- We need to find a subset of numbers such that the XOR sum is zero and the total cost is maximized, and remove the left part to cheat.

Observation

The modifications form a rooted tree.

- Construct the rooted tree, we need to find the answer for each vertex.
- Let's denote $d p[i][j]$ as the maximum total cost such that the XOR of chosen numbers is j if we choose numbers among the path from the root to the i-th vertex.
- Time \& space complexity: $O(n a)$, which is unfortunately unable to fit in the 8 MB limit.

I. Nim Cheater

Idea

Try different DFS orders won't affect the answer.

- Find the heavy light decomposition of the tree.
- For each vertex, DFS its light children first, and finally DFS its heavy child, give its space to its heavy child.
- Now $d p[i][j]$ can be stored in $f[c n t][j]$, cnt denoting the number of light edges on the path from the root to the i-th vertex.

Lemma

There will be at most $O(\log n)$ light edges on a path, so the space complexity is $O(a \log n)$.

J. Jewel Grab

Task

Given a sequence of jewels, each jewel has its color and its value. We are required to perform two types of operations:

- Modify a jewel in the sequence.
- Find the maximum total value of taken jewels if we start at position s and move right, skipping at most k jewels, such that no two taken jewels share the same color.

J. Jewel Grab

- For the i-th jewel, find the first jewel $p^{\text {te }}$; with the same color on the left side of it.
- For each query, let's move right from s step by step, assume we are at j with color c_{j} and value v_{j} :
- If pre $_{j}<s$, it is the first time we meet a jewel in such color, take it.
- Otherwise pre $_{j} \geq s$, we should compare it with the previous one, greedy keep the one with larger value, and skip one of them.
- The second part takes place at most k times, which is acceptable for $k \leq 10$.
- To speed up the first part, we need to find the next position j such that $p r e_{j} \geq s$, and find the sum in this range, which can be done by traveling on the segment tree in $O(\log n)$.
- Time complexity: $O(k \log n)$ per query.

K. Candy Ads

Task

Given n advertisement posters, we are required to choose some of them such that no two chosen advertisement posters will occupy the same pixel at the same time.
We are also given m extra conditions, each of which requires us to keep at least one of two listed advertisement posters.

K. Candy Ads

- For the i-th ad poster, introduce a boolean variable x_{i}, which is true iff we choose the i-th ad poster.
- For two pairs of ad posters (i, j), if they occupy the same pixel at the same time, we have $x_{i} \wedge x_{j}=$ False.
- For an extra condition (u, v), we have $x_{u} \vee x_{v}=$ True.
- We can build a graph with $2 n$ vertices and $O\left(n^{2}+m\right)$ edges to solve the above 2-SAT problem, which is unfortunately too slow to pass.

K. Candy Ads

- To solve the 2-SAT problem, we need to find the strongly connected components in the corresponding graph.
- We can find SCC using the Kosaraju Algorithm by running two similar DFS procedures on the graph.
- When we are visiting a vertex in DFS, we need to know the adjacent vertices, and we should skip visited vertices in a clever way.

Idea

Use Bitset to find the adjacent vertices and skip visited vertices.

- Time complexity: $O\left(\frac{n^{2}}{w}+m\right)$.

L. Random Permutation

Task

An integer sequence $a_{1}, a_{2}, \cdots, a_{n}$ is generated randomly, and the probability of being $1,2, \cdots, n$ are all $\frac{1}{n}$ for each a_{i}.
We are required to calculate the expected number of permutations $p_{1}, p_{2}, \cdots, p_{n}$ from 1 to n such that $p_{i} \leq a_{i}$ holds for each $i=1,2, \cdots, n$.

L. Random Permutation

Observation

No matter what the permutation p is, the number of the corresponding sequence a is always n !.

- There are n ! permutations, and n^{n} possible sequences a.
- So the answer is $\frac{n!n!}{n^{n}}$.

Thank you!

